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Abstract. Simulating the transport of multi-species plasma and neutral species in

the edge region of a tokamak magnetic fusion energy device is computationally intensive

and difficult due to coupling among various components, strong nonlinearities, and a

broad range of temporal scales. In addition to providing boundary conditions for

the core plasma, such models aid in the understanding and control of the associated

plasma/material-wall interactions, a topic that is essential for the development of a

viable fusion power plant. The governing partial differential equations are discretized

to form a large nonlinear system that typically must be evolved in time to obtain

steady-state solutions. Fully implicit techniques using preconditioned Jacobian-free

Newton-Krylov methods with parallel domain-based preconditioners are shown to be

robust and efficient for the plasma components. Inclusion of neutral gas components,

however, increases the condition number of the system to the point where improved

parallel preconditioning is needed. Standard algebraic preconditioners that provide

sufficient coupling throughout the global domain to handle the neutrals are not

generally scalable. We present a new preconditioner, termed FieldSplit, which exploits

the character of the neutral equations to improve the scalability of the combined

plasma/neutral system.

AMS classification scheme numbers: 65F08

PACS numbers: 52.65.Kj

1. Introduction

Many systems of partial differential equations arising in engineering and physics

applications exhibit a wide range of temporal and spatial scales; increasingly, these

already complicated models are being coupled together for multi-physics simulations [1].

Examples of this multi-physics approach in numerical plasma simulation for magnetic

fusion devices can be found in [2, 3, 4]. Applications from other areas include porous

media [5] and fission power plants [6]. In each of these examples, knowledge about the

characteristics of components of the system is used to produce a stable and efficient

simulation that may provide new insights into the physics or mathematical aspects of

the models.

This paper focuses on a numerical model that describes the transport of plasma

and neutral species in the edge region of tokamak magnetic fusion energy devices

in toroidal geometry. Transport simulations discussed here are conducted by using

UEDGE [7, 8]. The strong external toroidal magnetic field (B) in these devices results

in a large anisotropy for the plasma, with transport along the magnetic field (termed

parallel) having a much faster timescale than transport across the magnetic field (termed

perpendicular or radial). In this paper, “parallel” is used as an adjective in two different

senses: one is transport along B just mentioned, and the second is using multiprocessor

parallel algorithms; which meaning applies should be clear from the local context.

An accurate model of the edge plasma region in fusion devices is needed to answer

key design and operational issues. Among these issues are the peak plasma heat-flux

exhaust and associated erosion of material surfaces, the migration of impurities from
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such material interactions to the hot core, the build-up of tritium fuel in walls, and

the pumping of helium ash produced by core fusion reactions. To this end, UEDGE

provides edge modeling capabilities in the FACETS project [9, 10, 2], which has a goal

of coupled core-edge-wall modeling of ever-increasing fidelity for magnetic fusion energy

devices.

Modeling such plasmas in the core and the edge regions results in ill-conditioned

problems due to the large range of time scales, the complicated geometry with a

range of spatial scales, and the competing physical effects of the various degrees

of freedom. In the edge region, the importance of the neutral gas component

further complicates the problem. This paper focuses on the parallel scalability of the

edge system, especially on the impact of the neutrals. Using early computational

results and plasma/neutral transport knowledge, we construct a “physics-based”

preconditioner that improves solution time and scalability over simpler algebraic

and domain decomposition preconditioners. The term “physics-based” [11] can be

ambiguous; we use it here to describe an operator that uses more than just algebraic

insight to improve the conditioning of a linear system. A challenge in physics-based

preconditioning is determining how to incorporate key physical characteristics into the

operator. When this problem is handled successfully, the numerical performance can

benefit greatly, as demonstrated for plasma transport in [12, 13, 14, 15].

We describe a series of computational experiments with the components of a coupled

plasma/neutral simulation that illustrate why adding the neutral terms significantly

increases the difficulty of the resulting linear system. The results of these initial

simulations motivate a split approach to preconditioning, where groups of variables with

similar physical attributes are solved with different methods tailored to the physics of

each group. This approach differs from the approach of [14], where a semi-implicit

approximation is made for the fully implicit system, which produces a preconditioner

for the fully coupled system targeted to handle the different time scales with an easily

invertible operator.

The paper is organized as follows: Section 2 introduces the relevant equations,

the geometry, and the basic approach for the nonlinear solver using Jacobian-free

Newton-Krylov methods. In Section 3 we consider plasma simulations with fixed

neutral densities, and then complicate the simulation by allowing the neutrals to

evolve. In Section 4 we analyze the conditioning of the neutral problem and develop a

componentwise preconditioner (referred to as FieldSplit), which overcomes difficulties

of other approaches; we also test the FieldSplit preconditioner on a variety of more

complicated simulations. Section 5 discusses conclusions and directions of future work.

2. Equations, geometry, and basic solver

The basic equation set for the plasma is a two-dimensional (2D), toroidally axisymmetric

fluid model that describes the evolution of the ion density, ion parallel momentum,

electron temperature and ion temperature. The neutral species are described by two
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possible fluid models: one in which the neutral parallel velocity is computed by including

only charge-exchange coupling to ions and the neutral pressure gradient, and the second

in which neutral parallel inertia and viscosity are included. For either neutral model,

the ion and neutral temperatures are assumed strongly coupled through charge-exchange

collisions and are thus described by a common ”ion” temperature. Both plasma and

neutral equations have strong nonlinearities representing convective/diffusive transport

and coupled source/sink terms, as shown in Section 2.1.

Efforts are also increasing in kinetic edge plasma transport models (XGC,

COGENT) [16, 17] that include two added velocity space dimensions to describe

the plasma particle distribution functions. Also, kinetic Monte Carlo neutral codes

(EIRENE, DEGAS2) [18, 19] are sometimes used, but these kinetic models are not

considered here. One of the practical differences between kinetic and fluid transport

simulations is the timescale: fluid transport simulations can more easily be evolved over

longer time scales, making them more efficient for steady-state simulations, though not

as rich in physics content.

An early example of implementation of a 2D fluid edge transport model is the B2

code [20, 21], which uses the semi-implicit SIMPLE algorithm [22] to solve the Navier-

Stokes neutral fluid equations. More recently, B2 has evolved to SOLPS [23], now using

a implicit iterative scheme in which subsets of equations are solved successively.

The original uniprocessor approach taken by UEDGE [24] was to solve the complete

system of equations fully implicitly by using a preconditioned Newton-Krylov method.

A numerical finite-difference preconditioning Jacobian was formed and approximately

inverted by using ILUT [25]. Subsequently, work was performed on a domain-

decomposed parallel algorithm for the plasma equations by using a full finite-difference

Jacobian within each domain but with no preconditioner coupling between domains [8].

2.1. Physical model and geometry

Edge plasma transport can be characterized by fluid moments of the underlying

collisional kinetic equation for a plasma in a strong magnetic field; a general description

is found in [26], or more recently [27]. Here studies are conducted using equations for

plasma particle continuity, parallel momentum density, separate ion and electron energy
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densities, and neutral particle continuity as described in [7]:

∂

∂t
(ni) +∇ · (nivi) = SP

i (1a)

∂

∂t
(nimivi‖) +∇ · (nimivi‖vi) +∇‖(niTi) = eniE‖ − (∇ · Πi)‖ − Ri‖

−minnνcx(vi|| − vn||) + Sm
i (1b)

∂

∂t

(
3

2
ni,eTi,e

)

+∇ ·

(
5

2
ni,eTi,evi,e

)

− vi,e · ∇(ni,eTi,e) = −∇ · qi,e −Πi,e · ∇vi,e

+Qi,e + SE
i,e (1c)

∂

∂t
(nn) +∇ · (nnvn) = K i

Hnenn −Kr
Hnine (1d)

∂

∂t
(nnmnvn‖) +∇ · (nnmnvn‖vn) +∇‖(nnTn) = −(∇ · Πn)‖

+minnνcx(vi|| − vn||) + Sm
n . (1e)

We analyze cases using deuterium (denoted D, having a proton-neutron nucleus

with a single electron), typical of most present-day fusion devices. The primary variables

evolved are ni and nn for D+ and D0 densities, vi‖ and vn‖ for ion and neutral velocities

along B, Ti = Tn for the common ion/neutral temperature, and Te for the electron

temperature. The parallel electric field, E‖, can be replaced with plasma variables by

using the electron parallel momentum equation, neglecting inertia and electrical current:

eE‖ = −Te∇‖(lnne)− 1.71∇‖(Te), (2)

where ne = ni is the electron density in this quasi-neutral plasma. The simplest neutral

model neglects inertial and viscous terms in Eq. (1e), in which case vn‖ can be computed

algebraically from other variables, yielding a five-variable equation set used for some of

the calculations in later sections.

Physical terms and parameters in the equations just given include Sp
i - source

for neutral ionization and recombination, e - elementary charge, mi,n for ion and

neutral masses, Πi,e - viscous force, Ri,e‖ - friction force, qi,e - heat fluxes, Qi,e -

volume heating terms, SE
i,e - external source terms, K i

H - ionization rate coefficient, and

Kr
J - recombination rate coefficient. The term νcx is the ion/neutral charge-exchange

rate. The parallel transport coefficients come from collisional theory [26], whereas

the perpendicular transport coefficients arise from plasma turbulence and are typically

deduced from comparison of outer midplane profiles with experimental data.

The edge-region domain for a magnetically diverted tokamak has an annular shape

as shown in Figure 1(a). A strong toroidal magnetic field, Bt, and a weaker poloidal

magnetic field, Bp, are used to confine the hot core plasma. The resulting field lines form

closed surfaces in the (red) inner edge region and the hot core, but are open outside the

dotted separatrix where much of the plasma exhaust flux is directed to material divertor

plates.
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Figure 1: Conceptual steps are shown for viewing (a), the original edge tokamak

geometry in poloidal cross-section as (c), a logically rectangular domain. The original

domain is cut along the white dotted line in (a), opened as in (b), and reformed into

the equivalent domain (c), where the white dotted line now appears as two internal

boundaries. The dotted black line denotes the magnetic separatrix dividing regions of

closed magnetic field lines in the core and open elsewhere.

Boundary conditions are applied to the second order differential set in Eqs. (1) based

on physical considerations. A more detailed discussion is available [7]. In summary,

on the boundaries touching the hot core plasma or the side walls, either Dirichlet

or Neumann boundary conditions can be applied to the densities and temperatures,

specifying the variable value or its flux into or out of the simulation volume. Here we

use Dirichlet conditions, and the numerical behavior is not sensitive to this choice. For

the parallel velocities, on the core or outer wall, a radial slip condition is used, i.e.,

zero normal derivative of the velocities. For the inner/outer divertor plate boundaries,

the magnetic field lines intersect the material surfaces with strong plasma particle and

energy flows onto the plates. The ion and electron temperature equations use mixed

Robin boundary conditions to describe the flow of heat. The ion parallel velocity is set

to the ion acoustic speed with the neutral parallel velocity being a fraction of that of

the ion. A Neumann condition is applied to the ion density. The neutral flux into the

plasma is proportional to the D+ incident flux; that is, ΓD0 = −RpΓD+1. This particle

recycling is a major process at the divertor plates (and walls) and is characterized by

Rp near unity.

A quadrilateral-cell mesh is used for finite-volume discretization, with one

coordinate being along magnetic flux surfaces and the other coordinate being orthogonal

to the first or sometimes modified to fit along material surfaces; metric coefficients

preserve the original geometrical features in the logically rectangular domain. The

finite-volume spatial discretization stencil contains 9 points: the central cell of interest

and the 8 surrounding cells adjacent to the center. The parallel domain partitioning can

be either 1D, in the radial direction of Figure 1(c), or 2D, also including partitioning
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in the poloidal direction. When considering the cost of parallel communication for

evaluation of the nonlinear function, which requires data to be passed between adjacent

domains, the 2D decomposition scales better than the 1D variant because the surface-

area-to-volume ratio is lower, resulting in less communication.

Figure 2: Typical steady-state profiles for ion density, neutral density, and electron

temperature show very different structure. Figure 1 shows how this configuration relates

to the original toroidal geometry.

To illustrate the range of variable amplitiudes, Figure 2 shows a typical steady-

state solution for this edge plasma/neutral system for ion density, ni, neutral density,

nn, and electron temperature, Te. In comparison with Figure 1, one can see the large

neutral density near the divertor plates [left and right boundaries in panel (c)] that is

rapidly attenuated by ionization in the central edge-plasma region. The detailed input

parameters for Figure 2 are given in Section 3.

In order to arrive at the steady state shown in Figure 2, many time scales need to

be stepped over. Figure 3 shows some of the important time scales for tokamak edge

plasma/neutral systems.

The plasma transport is that of an anisotropic fluid, where the plasma fluid is

charged and thus strongly affected by the external magnetic field. The plasma equations

for density (1a), momentum (1b), and energy (1c) all govern variables that can be

characterized as anisotropic fluids. Ion flow in the poloidal direction is generally rapid

compared with the radial direction owing to a component of the large parallel velocity

mapping to the poloidal coordinate, which is the essence of the the magnetic confinement

mechanism. In fact, there is a large anisotropy in all the plasma transport coefficients in

these two directions that can be illustrated by considering classical thermal transport,

χ‖ and χ⊥. Along the magnetic field, Coulomb collisional mean-free path, λ, defines the

diffusion distance, whereas across the field, it is the gyroradius, ρ. Thus, the classical
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Figure 3: Significant phenomena in an edge simulation and their associated time

scales. Of particular note is the large gap between perpendicular neutral diffusion and

perpendicular ion diffusion.

parallel-to-perpendicular thermal diffusivity ratio scales as

χ⊥

χ‖

∼
(ρ

λ

)2

.

This ratio can be very small in the tokamak edge plasma region, especially for

electrons where values of ρ/λ ∼ 10−4 − 10−5 can occur. However, radial transport

is typically dominated by plasma turbulence rather than the classical collision process.

Consequently, χe⊥ can be enhanced by a few orders of magnitude, but the anisotropy

remains large.

In contrast to the plasma, the neutral particles, governed by Eq. (1d), diffuse

isotropically because they are unaffected by the external electric field. This neutral

isotropy has a significant effect on the numerical conditioning of the system because

the mesh is designed in deference to the plasma terms and is thus highly anisotropic.

Section 4.1 analyzes this conditioning issue.

Extending beyond the basic deuterium plasma, an impurity species such as neon

can be added to the simulation to model reduction of the peak heat flux to materials via

radiation losses. Electron impact excitation and ionization on neon, as well as electron-

ion recombination, result in a net energy loss to electrons via radiation loss (escaping

photons). In the core region such radiation degrades fusion power gain. In the edge

region, however, this radiative energy loss can be beneficial by distributing the plasma

exhaust power over a wide area on the wall, thus reducing the focused peak heat load

on divertors [28]. Neon increases the number of independent fluid variables by 11 per

cell because of the additional 10 neon charge states (Ne+1 through Ne+10) and the neon

atomic neutral species.

2.2. Nonlinear solver

The UEDGE equations are spatially discretized with a finite volume approach [29], and

the implicit Euler scheme is used to discretize time-dependent terms [30]. The coupled



Improving parallel scalability for coupled edge plasma/neutral transport simulations 9

system of equations (1a)-(1e) are of the form

du

dt
= G(u)

for some complicated function G. Here u is a vector composed of the unknown variable

values: at a minimum, plasma velocity, plasma density, ion temperature, electron

temperature, and neutral density. Applying an implicit Euler discretization produces a

discrete nonlinear equation

F (uk) =
uk − uk−1

∆t
−G(uk) = 0, (3)

which must be solved at each time step ∆t.

The choice of time step depends on several factors. If the primary interest is in the

steady-state solution to the transport problem, as large a time step as possible is taken,

where for some cases ∆t can be arbitrarily large such that a nonlinear algebraic system

of equations is solved iteratively. If such a direct steady-state solution is not possible,

however, a time step can aid convergence by adding substantial terms on the diagonal of

the preconditioning matrix. One can then progressively increase the time step to obtain

a steady-state solution without resolving the full dynamics of the system. The final case

is where the dynamics are of interest, and ∆t should then be small enough to resolve

the associated temporal evolution of the system. Here we are interested primarily in the

steady-state solutions, so the time step is used as an aid to convergence of the system

of equations.

We employ a Newton method (see, e.g., [31]) to solve Eq. (3), which is an iterative

method consisting of two parts: a linear solve and a vector update. Labeling uk the

unknown at the kth time step, these parts can be expressed as

For n = 0, 1, ..., N

J(F )(un
k)∆un+1

k = −F (un
k) (4a)

un+1
k = un

k +∆un+1
k , (4b)

where un
k is the result of the nth iteration, and J(F )(u) is the Jacobian of F evaluated

at u. Once convergence is reached at step N , the next time step is set as uk = uN
k . The

initial guess for a given time step is u0
k = uk−1, where u0

1 is the initial solution.

For practical applications, (4b) is not the actual update used at each Newton step.

Instead, a line search [31] is used to damp the magnitude of ∆un+1
k to prevent oscillatory

convergence behavior common during nonlinear solves. This changes the update portion

of the nonlinear solve from (4b) to

un+1
k = un

k + αn+1∆un+1
k , (5)

where 0 < αmin < αn+1 ≤ 1 is chosen according to some scheme. Experiments here use

a cubic interpolation scheme described in [32].



Improving parallel scalability for coupled edge plasma/neutral transport simulations 10

The final change for Newton-Krylov solvers in practical implementations comes in

the linear solve. In [33] it was determined that the quadratic convergence associated

with Newton methods can be preserved even when (4a) is solved only approximately.

This revelation opens nonlinear solvers to the possibility of solving (4a) with an iterative

method, thus introducing the Krylov half into the term Newton-Krylov method. The

iterative method employed here is GMRES [34], which is appropriate in this context

because J(F ) is neither symmetric nor positive definite, and J(F )T is not available.

When a Newton-Krylov method is performed in the absence of the true Jacobian,

it is often called a matrix-free or Jacobian-free Newton-Krylov (JFNK) approach [35].

By using finite differences, the matrix-vector product J(F )(u)b can be approximated:

F (u+ δb) = F (u) + δJ(F )(u)b+O(δ2)
b

‖b‖

⇐⇒ J(F )(u)b ≈
F (u+ δb)− F (u)

δ
. (6)

By computing finite difference Jacobian-vector products for the iterative solve,

assembling the actual Jacobian is never required. Rather, some approximation to

the inverse of the Jacobian can be used to precondition (4a). Choosing an effective

approximation is one of the goals of this work.

Note that the older serial version of UEDGE has used a version of the Newton-

Krylov solver NKSOL [36] with the first-order 1/∆t Euler term of Eq. (3) added.

UEDGE has also previously used the PVODE [37] solver with a higher-order ∆t

algorithm that is now a component in the SUNDIALS [38] package. Some initial

parallel results results for UEDGE in [8] utilized PVODE. However, all results in

the present paper use the backward Euler discretization with nonlinear solvers from

PETSc [39], which provides parallel sparse Jacobian computation via finite differences

with coloring [40], matrix-free Jacobian-vector products, suites of Krylov methods and

preconditioners, and consistent profiling [41].

Some preconditioning clarification is needed for this work. The term LU

preconditioner means the full LU decomposition [34] applied to a Jacobian

approximation. In contrast, the additive Schwarz method (ASM) preconditioner [42]

is based on domain decomposition and conducts local solves (in this case, we use

local LU factorization) on only the part of the domain owned by each processor. A

tuning parameter called the overlap, when increased, allows for more communication

between processor nodes at additional cost. The default of 1 cell overlap will be

used in all experiments unless otherwise noted; for these UEDGE models, there was

little or no improvement in the solve speed for larger overlap. Note that when using

a single processor (NP = 1), these two preconditioners are actually the same. We

also consider ILU(k) [25], symmetric successive over-relaxation (SSOR) [34], algebraic

multigrid (AMG) [43], and ILUdt [44], an incomplete LU factorization utilizing a drop

tolerance strategy, as discussed in the following sections.
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3. Results using basic solver/preconditioner

Having described the plasma transport simulation and the structure of the associated

solver, we now analyze its efficiency for typical edge plasma parameters. The geometry

corresponds to the DIII-D tokamak as shown in Figure 1. The initial conditions for

these simulations are taken from a steady-state solution obtained for core-boundary

input parameters of fixed Te = Ti = 100 eV and ni = 2.5 × 1019 m−3. The radial

transport coefficients for all plasma variables are set to 1 m2/s for simplicity, a value

that is in the range typically deduced for present-day devices. The divertor plate particle

recycling coefficient is set to Rp = 0.9. For the simulations presented in this section,

the core-boundary values of Te and Ti are then raised to 120 eV, and the new system is

solved to a convergence level where the L2-norm of the residual is reduced by a factor

of 108 from the initial residual for a given time step.

The first subsection shows the effectiveness of basic preconditioners for obtaining

good multiprocessor performance when only the plasma variables are evolved. The next

subsection illustrates the impact on parallel scaling when the neutral density evolution

is added to that of the plasma.

3.1. Solver performance for fixed neutral gas

Because the computational grid is laid out anisotropically in deference to the dominant

plasma terms, there should be a reasonably conditioned problem when the plasma terms

are handled separately and the neutral terms fixed. The timing results for “plasma

only” simulation on a 256x128 grid are displayed in Figure 4; the preconditioners being

considered are the LU preconditioner and the ASM preconditioner with 1 block per

processor, overlap of 1 cell, and LU as the subdomain solver for each block.

NP Speedup

LU ASM

2 1.85 2.18

4 3.33 4.43

8 5.50 8.44

16 8.01 14.83

32 11.03 20.94

(a) The ASM precondi-

tioner scales significantly

better than the LU precon-

ditioner.

1 2 4 8 16 32
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(b) The LU Factor bar for the LU preconditioner (the left bars)

stagnates and dominates the computational cost for larger NP .

Figure 4: Results showing that plasma transport simulations (with fixed neutral terms)

are well conditioned because they can be easily solved with the weaker and more scalable

ASM preconditioner.
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The bar graphs such as Figure 4b, show the proportion of time spent in various

phases of the nonlinear solve; these are as listed below, along with an italicized comment

explaining whether that cost depends on the number of linear iterations required. For

instance, Jacobian evaluation occurs once at the beginning of each nonlinear iteration,

so its cost is linear iteration independent.

• Jac Eval - Linear iteration independent - Evaluation of the approximate Jacobian

used for preconditioning only.

• Line Search - Linear iteration independent - Improves most of the globalization

of JFNK by reducing the size of the suggested Newton step (see Section 2.2).

• LU Factor - Linear iteration independent - Production of triangular factors.

For the LU preconditioner, this refers to the global factorization; for the ASM

preconditioner, this refers to local factorizations on each processor.

• PC Apply - Linear iteration dependent - Preconditioning linear solve using factors

from LU Factor.

• KSP Solve - Linear iteration dependent - Krylov SubsPace (KSP) methods; in

this problem GMRES is used; this phase includes Jacobian-vector products.

• Other - Convergence monitoring, incidental memory allocations, other trivial costs.

The ASM preconditioner is effective when the 1D domain decomposition is used

because all the couplings in each radial strip are retained, while most couplings across

radial strips are neglected. Less plasma transport information is lost when using the 1D

decomposition (because fewer relevant terms cross the radial partition); therefore, the

quality of the preconditioner remains high, and the solution is obtained more quickly.

See Figure 5 for a comparison of the matrix nonzero patterns with 1D/2D domain

partitions.

ASM is less effective than LU on ill-conditioned systems, so its success here shows

that the “plasma terms only” problem is well conditioned with ∆t = 10−4. The choice of

time step does affect the conditioning of the system. As discussed in [45], when problems

of the form (3) are solved with a Newton iteration, the associated linear systems will

have improved conditioning with a smaller time step ∆t. This can be seen for a simple

implicit time discretization scheme (like that of UEDGE), which produces a linearized

system of the form (4a),
(

I−∆t J(F )
(

u
(n)
k

))

︸ ︷︷ ︸

=A

∆u
(n)
k = u

(n)
k − uk−1 −∆t F

(

u
(n)
k

)

,

that needs to be solved iteratively. As is well known [46], a linear system is best solved

when the spectrum of the system matrix, A, has eigenvalues clustered away from 0.

Assuming the Jacobian term J(F )
(

u
(n)
k

)

is ill-conditioned (were it not, this

problem would be easily solved), it has eigenvalues that are spread over a large region

of the complex plane. By multiplying these eigenvalues by a small ∆t term, the region

of the complex plane covered by the eigenvalues is compressed toward the origin.
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(a) 1D nonzero pattern (b) 2D nonzero pattern

Figure 5: The 1D and 2D decompositions produce different global matrix orderings.

These matrices were produced with NP = 32.

By itself, this would not cause any difference in the conditioning because both the

largest and smallest eigenvalues would be scaled by the same factor and thus their ratio

would remain unchanged. When A is actually formed, the identity matrix is added to

the scaled Jacobian, pushing this cluster of scaled eigenvalues away from 0. As ∆t → 0

the eigenvalues should approach a cluster around 1 on the real axis. Such a matrix is

very well conditioned, and iteratively solving such a system should require little effort.

Figure 6 shows this effect on the ASM preconditioner, which is not appropriate for

an extremely ill-conditioned system. Its ineffectiveness is apparent in Figure 6b, where,

for ∆t = 1, 78 linear iterations are required on average for each nonlinear iteration.

That number decreases to 4 linear iterations on average for ∆t = 10−5, which in turn

cuts the average nonlinear iteration time in half.

As the quality of the preconditioner improves, the number of linear iterations

required per nonlinear iteration should decrease. This situation is noticeable in Figure

6a, where the proportion of time spent on linear iteration dependent costs (PC Apply

and KSP Solve) decreases significantly as ∆t decreases.

When taking multiple time steps, the solve time implications may be more

complicated than the situation described above. A decrease in ∆t may change the

number of nonlinear iterations required to converge because the initial guess at time tn,

u
(0)
n , is chosen to be the solution from the previous time step un−1. Basically, choosing

a larger time step will likely yield a worse initial guess.

The cost of constructing the Jacobian (Jac Eval) is a substantial fraction of the

average time per time step in Figure 6a, especially at small ∆t. In order to reduce the
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(a) Linear solve proportion decreases with time step.

Time step Average

(sec) linear

iterations

1 78

.1 78

.01 67

.001 41

.0001 7

.00001 4

(b) Average linear iterations per

nonlinear iteration decrease with

time step.

Figure 6: As the time step decreases, the conditioning of the system improves, and the

ASM preconditioner becomes more effective.

average cost for multiple time steps, it can be useful to lag Jacobian computations [35]

and reuse Jacobians within and across time steps. In fact, this strategy has been used

successfully for multiple time-stepping in serial UEDGE since its inception [24]. While

a time step ∆t ∈ [10−4, 10−3] is appropriate for a coupled core-edge simulation or to

observe fast time-scale dynamics within the edge, steady-state problems have a final

time T = O(1). The lagged-Jacobian approach can thus allow a steady state solution

to be efficiently obtained by a succession of variable time steps, although this topic is

not discussed further in this paper.

3.2. Impact of dynamic neutrals

As has been documented [34], the full LU decomposition loses scalability because it is

inherently global, and the additional nonzeros generated during the factorization require

substantial interprocessor communication. This lack of strong scalability is displayed

in Figure 7a, where the speedup profile looks unchanged compared with that in Figure

4a. For the original plasma-only simulations, this was not a problem, because we saw

in Figure 4 that the ASM preconditioner scaled much better. Unfortunately, Figure 7

shows that is not the case for the coupled plasma/neutral simulation.

Figure 7b shows that the time required for performing the LU factorization fails

to scale as the number of processors increases. For the LU preconditioner, each

of the components of the nonlinear solve either scales well (Jac Eval) or becomes

inconsequential compared with the cost of the solve except the LU Factor bar. The

ASM preconditioner is not scaling well in this case, in direct contrast to the plasma-

only simulation. Here the quality of the preconditioner degrades too significantly, and

consequently too many GMRES iterations are required to reach convergence.

The choice of preconditioner is clearly a primary factor for scalability; neither the
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NP Speedup

LU ASM

2 1.88 1.59

4 3.48 2.58

8 6.17 2.77

16 9.61 2.87

32 12.82 2.15

(a) The LU precondi-

tioner maintains a similar

speedup trajectory as in

Figure 4a.
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(b) The ASM preconditioner fails to scale almost immediately

because the time spent in GMRES grows; this is caused by an

increase in linear solver iterations.

Figure 7: The ASM failure shows that the coupled plasma/neutral transport simulation

is very ill-conditioned. As expected, the LU preconditioner is indifferent to the change

in conditioning caused by adding the neutral terms; hence, these results mirror those of

the plasma transport simulation shown in Figure 4.

LU nor ASM preconditioners may be ideal for larger problems. As was determined in

Section 3.1, the plasma terms alone are well conditioned, but introducing the neutral

terms hinders the conditioning. Further analysis is required to understand these issues

in preconditioning and to potentially improve scalability.

4. Improved decomposition algorithm for the plasma/neutral system

This section shows that isotropic diffusion on an anisotropic grid is intrinsically ill-

conditioned. We develop a new preconditioner to isolate the troublesome neutrals from

the plasma terms, and we demonstrate scalability improvements for several cases.

4.1. Analysis of neutrals on an anisotropic mesh

To understand the impact of adding the neutral component on the parallel scaling,

we first consider the properties of the neutral continuity equation. For a high-density

plasma typical of the edge plasma region, the neutral velocity is determined largely by

charge-exchange collisions, namely, vn ∼ −∇(Tn/mn)nnτcx, where Tn = Ti is the neutral

temperature, and τcx = 1/νcx is the neutral/ion charge-exchange time. Consequently,

the neutral particle continuity equation (1d) has the form of a simple isotropic diffusion

equation.

We consider a simple rectangular grid shown in Figure 8 with ∆y = α∆x for

0 < α ≪ 1. The governing PDE is the following Poisson equation with homogeneous
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Figure 8: Grid spacing for ∆x is much larger than ∆y.

Dirichlet boundary conditions
(

∂2

∂x2
+

∂2

∂y2

)

u(x, y) = f(x, y) interior,

u(x, y) = 0. boundary

Using finite differences (for simplicity; UEDGE uses finite volumes) to discretize the

PDE on the anisotropic grid from Figure 8 produces the system of equations

−2ui j + ui+1 j + ui−1 j

(∆x)2
+

−2ui j + ui j+1 + ui j−1

(∆y)2
= fi j i = j = 1

ui j = 0 otherwise,

where f11 is f evaluated at the same location as u11. Because of the structure of this

particular stencil, the corner points do not affect the interior point, so their value need

not be included in the solution of the system. Their omission leaves a system of 5

unknowns, which after substituting ∆y = α∆x takes the Ax = b form









1

1

1

1

α2 1 1 α2 −(2 + 2α2)



















u01

u10

u12

u21

u11










=










0

0

0

0

α2(∆x)2f11










.

This particular system can be easily inverted to x = A
−1b










u01

u10

u12

u21

u11










=










1

1

1

1
α2

2+2α2

1
2+2α2

1
2+2α2

α2

2+2α2

−1
2+2α2



















0

0

0

0

α2(∆x)2f11










,

giving the 1-norm condition number of the system as

κ1(A) = ‖A‖1‖A
−1‖1

= (2 + 2α2)

(

1 +
1

2 + 2α2

)

= 3 + 2α2.
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Since the restriction was made that 0 < α ≪ 1, we have κ1(A) ∈ (3, 5], which

is a well-conditioned system. Initially that may seem like a positive outcome, but

one must analyze the implications of that α restriction on the right hand. As α → 0,

α2(∆x)2f11 → 0 as well, which leaves a right-hand side that begins to look homogeneous

as the grid anisotropy becomes more extreme. To compensate for this shrinking nonzero

term, the matrix condition number should increase; instead it is bounded from above

by 5, so that the system becomes insensitive to very small terms.

This issue is not caused simply by the choice of ∆y = α∆x for 0 < α ≪ 1 rather

than ∆x = γ∆y for γ ≫ 1. Reformulating the system with this discretization as Â

produces a similar matrix and a similarly structured condition number

κ1(Â) = (2 + 2γ2)

(

1 +
γ2

2 + 2γ2

)

= 2 + 3γ2.

Unfortunately, an anisotropic grid is characterized in this formulation as γ → ∞, which

shows that the condition number is not bounded for this system but, rather, grows

quadratically with γ. Thus, the system can be ill-conditioned as a direct result of

discretizing an isotropic diffusion operator on an anisotropic grid.

4.2. The FieldSplit algorithm

Section 3.2 observed that domain decomposition based preconditioners such as
ASM are not effective for solving the challenging coupled neutral and plasma
species simultaneously on an anisotropic grid. However, ASM was successful when
preconditioning the system with only the plasma terms in Section 3.1. This could be
interpreted as part of the system being amenable to a cheaper preconditioner that proves
ineffective when applied to the coupled system. Thus, we consider the coupled system
as organized in the traditional block structure of one block of unknowns per grid point:
































ni

miv‖
Ti

Te

nn









1







u1

...








ni

miv‖
Ti

Te

nn









M







uM
























︸ ︷︷ ︸

unknowns































J1(F )(u1)









· · ·









J1(F )(uM )









...
. . .

...








JM (F )(u1)









· · ·









JM (F )(uM )































︸ ︷︷ ︸

Jacobian

where Jk(F )(uℓ) is the Jacobian of F with respect to the set of unknowns uk evaluated

at the set of unknowns uℓ, assuming M total grid points. Here the plasma terms are
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colored red and the neutral terms blue. The vector of values uℓ is colored green to

signify that neither a preconditioner for the plasma nor neutral terms is fully effective.
If the vector of unknowns were reordered so that the neutral terms were all

segregated from the plasma terms, the resulting ordering would produce the Jacobian












































(ni)1
(miv‖)1
(Ti)1
(Te)1
...

(ni)M
(miv‖)M
(Ti)M
(Te)M

























uP






(nn)1
...

(nn)N












uN


























︸ ︷︷ ︸

unknowns











































JP (F )(uP )



































JP (F )(uN )
























JN (F )(uP )













JN (F )(uN )
































︸ ︷︷ ︸

Jacobian

where now JP (F )(uN) is the Jacobian of F with respect to the plasma terms evaluated

at the neutral variables uN , assuming again M total grid points. Notice that after this

permutation all plasma variables (red) are segregated from all neutral variables (blue),

and no mixed terms (green) need to be evaluated. The only interaction between plasma

and neutral variables occurs in the off-diagonal blocks.

Reordering changes the sparsity structure of the matrix, which was already well

banded in the 1D partition case as shown in Figure 5a. This change in sparsity structure

can increase the time required to compute and apply a preconditioner based on the full

LU factorization. For other preconditioners, however, if the nonzeros moved away from

the diagonal were already largely neglected or unimportant, then terms retained would

be sufficient for an efficient linear solve.
Applying this logic to the reordered Jacobian from this problem produces

J(F )(u) =

(
JP (F )(uP ) JP (F )(uN )

JN (F )(uP ) JN (F )(uN )

)

−→ PBJ =

(
JP (F )(uP )

JN (F )(uN )

)

(7)

where PBJ is a block Jacobi preconditioner void of the off-diagonal blocks present in

the true Jacobian. This preconditioner offers two key benefits over a strictly algebraic

preconditioner such as ILU(k) or the domain decomposition preconditioner ASM.

(i) By neglecting the off-diagonal coupling terms JP (F )(uN ) and JN(F )(uP ), the

system is broken into smaller subproblems for preconditioning, each of which can

potentially be handled by a different solver.

(ii) The plasma and neutral terms have now been segregated for more efficient

preconditioning, though these remain fully coupled for the global problem via the

Jacobian-free Newton-Krylov approach.
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Combining these two ideas with the preconditioning results from Sections 3.1 and 3.2

provides a logical method of inverting the two diagonal blocks from PBJ : JP (F )(uP )
−1

will be produced with additive Schwarz, and JN(F )(uN )
−1 will be computed with

algebraic multigrid [43], which is optimal for isotropic diffusion.

As motivated by these challenges in robust and scalable linear solvers for coupled

edge plasma/neutral transport simulations and other multiphysics applications [1], a

relatively recent addition to PETSc is the FieldSplit class of preconditioners [47],

designed for the flexible hierarchical construction of block solvers. The general

FieldSplit infrastructure solves linear block systems using either block relaxation or

block factorization (Schur complement approaches). Arbitrary square block systems are

supported, with the user specifying only index sets to identify each block (which may

overlap). Any algebraic solver can be used in each block, and algorithmic choices can be

specified as runtime options. Additional applications using FieldSplit infrastructure

include geodynamics [48], ice sheet dynamics [49], power networks [50], and mesoscale

materials modeling [51].

4.3. Results for the FieldSplit algorithm

We implemented the preconditioning approach introduced in Section 4.2 using PETSc’s

FieldSplit (FS) infrastructure. This new approach to preconditioning — handling the

plasma and neutral terms separately — improves both the solver speed and scalability,

as shown in Figure 9. Note that we use the additive variant of FieldSplit, where the

individual blocks are inverted separately and then the results are added together. For

the remainder of this paper we reference only the additive approach when using the

term FieldSplit or the abbreviation FS.

Gains made by the FieldSplit preconditioner over the global LU come from the

reduced cost of the LU factorization within FieldSplit. Recall that the two disjoint

blocks present in the preconditioner are inverted with two different methods:

• JP (F )(uP )
−1 is approximated by ASM with n domain partitions, where n is the

number of processors. Each domain, along with a small overlap from neighboring

domains, is then solved with LU factorization. Each LU factorization, computed

on a block roughly 1/n times the dimension of JP (F ), requires no communication.

• JN(f)(uN )
−1 is computed by algebraic multigrid [52] (using hypre [53]) over the

entire domain. Multigrid preconditioners are particularly effective for diffusion

systems because of the orthogonal nature of the near and far eigenfunctions of the

solution. Solving for the far range diffusion effects (the so-called coarse grid solve),

as well as moving between grid levels, requires communication between processes

and becomes less efficient as the number of processors increases.

Figure 9a shows the FieldSplit preconditioner consistently outperforming the LU

preconditioner to the point where for NP = 32, FieldSplit is roughly 2.5 times faster.

For the LU preconditioner, the cost of computing and applying the preconditioner

scales poorly, as expected because of the level of fill-in, which requires additional memory
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(a) FS solves are much faster than LU.

NP Average linear Speedup

iterations

LU ASM FS LU ASM FS

1 7 7 13 1.0 1.0 1.0

2 7 87 17 1.9 1.6 2.2

4 7 136 17 3.5 2.6 4.6

8 7 255 22 6.1 2.8 8.4

16 7 650 32 9.5 2.9 13.4

32 7 1585 44 12.7 2.1 22.8

(b) FS iterations are fewer and less costly.
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(c) FS scales better than LU and ASM.
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(d) We incur little increase in LU factorization cost.

Figure 9: For the coupled plasma/neutral system, FieldSplit preconditioning

outperforms LU at ∆t = 10−4.

allocation and interprocessor communication. Within FS, the cost of LU Factor drops

dramatically, mostly because the sizes of the subdomains conducting those factorizations

shrink. The increase in linear iterations per nonlinear iteration as seen in Figure 9b

prevents the PC Apply and KSP Solve bars from scaling as well as they could. This

corresponds then to a small loss in scalability for NP = 32 (as seen in Figure 9c) because

the LU Factor bar is already as small as possible and the other linear solve terms are

bounded by the number of linear iterations.

More qualitatively, FS can be thought of as a targeted preconditioner that uses more

robust yet more costly techniques where necessary. The performance of this particular

FS algorithm is predicated on being able to solve the plasma terms effectively with ASM

even though Figure 9a shows that ASM scales poorly on the plasma/neutral coupled

system. FieldSplit takes advantage of the results from Figure 6a, which show that

ASM works well on the plasma terms, and uses a more costly yet more powerful solver

(algebraic multigrid) on the tougher terms that prevent ASM from working well.
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In conclusion, the significant improvement from LU preconditioning to FieldSplit

can be attributed to selective use of a domain decomposition preconditioner on variables

that do not demand global coupling during the solve.

4.3.1. Larger time steps Many significant tokamak dynamics can be observed with

small time steps (refer to Figure 3), but in order to conduct a steady-state simulation,

larger time steps may be appropriate. Unfortunately, as discussed in Section 3.1, some

preconditioners fail to perform when applied to larger time steps. Figure 10 shows

results for time steps 10 and 100 times larger than previous experiments.
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(a) FieldSplit outperforms LU for ∆t = 10−3.
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(b) FieldSplit falters near ∆t = 10−2.

NP Preconditioner

LU FS ASM

1 7 25 7

2 7 26 52

4 8 22 103

8 8 33 240

16 8 43 621

32 8 53 **

(c) Average linear iterations per

nonlinear iteration for ∆t = 10−3

NP Preconditioner

LU FS ASM

1 7 39 7

2 7 46 51

4 6 44 180

8 6 56 427

16 6 89 **

32 6 113 **

(d) Average linear iterations per

nonlinear iteration for ∆t = 10−2

Figure 10: FieldSplit performs adequately for ∆t < 10−2.

Note: ** denotes divergence

The LU preconditioner performs independently of ∆t. The same cannot be said

for the FieldSplit preconditioner, whose quality decreases with an increase in time step.

This performance is in agreement with Section 3.1 and is likely brought on by the

increasingly poor performance of ASM for larger timesteps (see Figures 10a and 10b).

These results bring to the forefront the significance of the ASM component

of this particular FieldSplit preconditioner (as distinct from the more general

PETSc FieldSplit infrastructure described in [47]). FieldSplit outperforms the LU
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preconditioner when large portions of the system do not require the full LU factorization

and thus are well conditioned. As the time step increases, the plasma terms become

more difficult to solve, and the ASM preconditioner fails to provide an adequate speedup

over the LU preconditioner. This situation may motivate future research on alternative

physics-based solvers for portions of the variables, as well as a more general process for

identifying appropriate FieldSplit components.

We also note that the quality of the initial guess will generally degrade given a

larger time step. For this example there is no significant effect, but it is conceivable

that the choice of initial guess could affect the convergence of FieldSplit given the longer

path that each linear solve takes to convergence.

4.3.2. Including inertia and viscosity for the neutral parallel velocity A primary goal

of studying different preconditioning techniques is to allow for flexibility in the solver

for different physical simulations. In addition to the 5 degrees of freedom (5 variable

types) that exist in numerical experiments thus far (D+ temperature, D+ velocity, D+

density, electron temperature, D0 density), the inclusion of neutral inertia and viscosity

requires that the neutral parallel velocity equation be added to the system of differential

equations; until now it has been computed algebraically by using the solution to the

5-variable differential system as described in Section 2. Doing so increases the share of

equations describing the neutral terms from 20% to 33% (from 1 of 5 to 2 of 6).

It is reasonable to assume that this shift will have an effect on the solve strategy.

For 5 variables the 1D domain decomposition was preferred by the neutrals and thus

was preferred by FieldSplit because only a single neutral term dissented. Doubling the

number of neutral terms has shifted the balance of power, as can be seen in Figure 11,

where the 2D partitioning is preferred to the 1D partitioning.
We note that 2D partitioning is not supported for the NP=4 case. To prevent a cell

from having neighboring values both adjacent and across the branch cut, a 4-processor
case is not viable. Also of note is that 3 fields are chosen in this FieldSplit preconditioner
instead of 2 previously: plasma terms, neutral density, neutral momentum. This means
that in the preconditioner, the terms coupling the neutral density with other variables
are ignored, as well as the terms coupling the neutral momentum to other variables. In
matrix form this looks like




JP (F )(uP ) JP (F )(uN ) JP (F )(uM )

JN (F )(uP ) JN (F )(uN ) JN (F )(uM )

JM (F )(uP ) JM (F )(uN ) JM (F )(uM )



 →





JP (F )(uP )

JN (F )(uN )

JM (F )(uM )



 ,

where uM are momentum variables and JM(F ) is the Jacobian of F with respect to uM .

The main reason for the improved behavior with the 2D partition is the fewer

linear iterations required per nonlinear iteration, as seen in Figure 11b. Because the

JN(F )(uN ) and JM(F )(uM) blocks are solved directly, the only difference between the

1D and 2D cases is the JP (F )(uP ) solve, which is conducted with ASM by using

sequential LU on each subset of plasma terms. By ordering the plasma variables

into 2D blocks rather than 1D strips, more significant terms are retained, making the

preconditioner more effective.
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(c) In 1D, FieldSplit fails to perform.
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(d) In 2D, FieldSplit outperforms the

LU preconditioner.

Figure 11: The 6-variable case sees better performance with FieldSplit using a 2D

partitioning.

4.3.3. Adding a neon impurity Impurity seeding of a plasma discharge can be used

to radiate a portion of the plasma energy and thus reduce the peak heat-flux to the

divertor plates [28]. Introducing a neon impurity to the UEDGE simulation increases

the complexity of the simulation because 10 new ion densities must be computed (one

for each possible charge that a neon could take) as well as a neutral neon species. For a

UEDGE simulation, this increases the total degrees of freedom at each grid point in the

simulation to 16, with 5 original hydrogen variables and 11 neon variables; the neutral

hydrogen and neon momentums with be solved for algebraically and not included in

the system of differential equations. Also, for the neon cases we increase the initial

core-boundary temperatures to Te = Ti = 400 eV before perturbing them to 440 eV and

increase the recycling coefficient to Rp = 0.95.

Using a 128x64 grid, we conducted experiments using LU, ASM, and FieldSplit

preconditioners; the outcomes are compared in Figure 12. The FieldSplit performed
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here resembles the structure from Section 4.2, where all the plasma terms (now including

the neon ions) are segregated from the neutral terms (now including neutral neon).

Figure 12b shows that both FieldSplit and LU incur almost no change in average

linear iterations; this result, coupled with the diminishing cost of FieldSplit for more

processors, explains the better scalability in Figure 12c. We note that on this smaller

grid it is only possible to run up to NP = 16 for the 1D partition.
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(b) FS iterations are fewer and less costly, which allows

for more speedup.

10
0

10
1

10
0

10
1

Processor nodes used

S
pe

ed
up

128x64 grid, 16 variables, dt=1e−4

 

 
Ideal
FS
LU
ASM

(c) FS scales better than LU and ASM.

4:LU 4:FS  8:LU 8:FS  16:LU 16:FS
0

50

100

150

200

250

300

Processor nodes used : Preconditioner

T
ot

al
 s

ol
ve

 ti
m

e 
(s

ec
)

128x64 grid, 16 variables, dt=1e−4

 

 
Jac Eval
Line Search
LU Factor
PC Apply
KSP Solve
Other

(d) We observe different performance for FS and LU.

Figure 12: FieldSplit preconditioning outperforms LU when simulating a neon impurity.

We note that although this simulation involves more unknowns than the 5-variable

(Section 4.3) and 6 variable (Section 4.3.2) cases, it is being run on the same size mesh.

The greater degrees of freedom per node create a larger system with similar block

structure, but larger blocks that are more dense. This is in contrast to a system with 5

active variables being run on a 256x128 mesh, which would have roughly the same size

but a very different and sparser, nonzero pattern. Understanding the structure of the

system is crucial to choosing an appropriate preconditioner, especially for FieldSplit,

given the free parameters needed during its construction (selecting fields, choosing

coupling, subsolvers/parameters).
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5. Conclusions and future work

Coupled plasma/neutral edge transport simulations are vital to accurately predicting

key design and operational issues for magnetic fusion energy devices (as well as

other fusion concepts not treated here). However, models of edge systems are

intrinsically ill-conditioned because of nonlinearities and disparate time scales. We

have demonstrated that a physics-based preconditioner named FieldSplit, used with

a Jacobian-free Newton-Krylov method, can provide an efficient method for solving

coupled plasma/neutral simulations in parallel. Preserving strong coupling between the

plasma and neutral terms is necessary for simulation fidelity, but traditional algebraic

preconditioners are not generally scalable in this context because of the overhead

of parallel communication. To improve efficiency and scalability of the solver, one

can separate the FieldSplit preconditioner into neutral and plasma components, each

consisting of its own physics and solved with an appropriate method. Specifically, good

parallel scaling is obtained by preconditioning the troublesome neutral equations with

algebraic multigrid and the plasma equations with an additive Schwarz preconditioner.

Preconditioning the individual components of a coupled problem while solving

the fully coupled model with a Newton-Krylov method can be applied to more

complicated problems in magnetic confinement fusion, including the addition of

equations for the neutral deuterium momentum and/or an impurity species. Future

work includes applying the FieldSplit approach to coupled core/edge simulations and

investigating more advanced FieldSplit functionality (e.g., new component solves, Schur

complements).
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